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CONCENTRACIÓN DE LODOS DENTRO DE UN REACTOR TANQUE AGITADO
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Abstract
The purpose of this work is to set the basis for a numerical scheme to solve the model that describes the diffusion and
reaction, with nonlinear kinetics, in the dispersed catalytic pellets part of the slurry contained in a reactor tank. The method
presented is based on the use of Green’s functions for the solution of the linear problem. However, different analytical
solution approaches can lead to identical expressions for the solution; some of these results are compared and discussed.
The numerical solution for the nonlinear case relies on the use of an iterative procedure. At this point, it is evident that the
main drawback of the method proposed for the solution of the nonlinear transient problem is the infinite Fourier series that
represent the Green’s function. For such reason, the presented method is also used to obtain fluid and pellet concentration
profiles for the quasi-steady state and steady-state cases. The resulting expressions for such two simpler cases are used to
predict the concentration profiles that are also compared with those resulting from the numerical solution of the problem
using finite differences. The good agreement of the predictions indicates that more compact expressions for the Green’s
function will improve the efficiency of the new numerical scheme.

Keywords: Green’s function, analytical solution, iterative scheme, nonlinear kinetics, stirred tank reactor.

Resumen
El propósito de este trabajo es sentar las bases de un esquema numérico para resolver el modelo que describe la difusión
y reacción, con cinética no lineal, en la parte del lodo que contiene pellets catalı́ticos dispersos en un reactor tanque
agitado. El método presentado se basa en el uso de funciones de Green para la solución del problema lineal. Sin embargo,
diferentes métodos de solución analı́tica pueden llevar a expresiones idénticas de la solución; algunos de estos métodos
son comparados y discutidos. La solución numérica del caso no lineal se basa en el uso de un procedimiento iterativo. En
este punto, es evidente que la principal desventaja del método propuesto para la solución del problema no lineal transitorio
son las series de Fourier infinitas que representan a la función de Green. Por estas razones, el método presentado es usado
también para obtener los perfiles de concentración en el fluido y las partı́culas para los casos de estados cuasi-estacionario
y estacionario. Las expresiones resultantes para estos casos más simples se usan para predecir los perfiles de concentración
que son comparados con los resultantes de la solución numérica usando diferencias finitas. La buena concordancia de
las predicciones indica que expresiones más compactas para las funciones de Green mejorarán la eficiencia del esquema
numérico.

Palabras clave: funciones de Green, solución analı́tica, método iterativo, cinética no lineal, reactor tanque agitado.
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1 Introduction

Several experimental systems that include a stirred
tank reactor are often used to collect concentration
data from which kinetic parameters are obtained
(c f ., Smith, 1981). Furthermore, research in
many anaerobic systems for hydrogen production are
carried out in this type of systems (Fan, et al.,
2006). As a matter of fact, bio-hydrogen production
from food waste requires optimizing hydraulic
retention times in continuous stirred tank reactors
(CSTR) (Reungsanga et al., 2013). Nowadays,
continuously stirred tank bioreactors are actively used
for the treatment of hydrocarbon-rich wastewater
from industrial wastewater effluents (Gargouri et al.,
2011). In addition, optimization and control of biogas
production is studied in this type of reaction systems
operating both as a single unit (Castrillón et al., 2013)
or in series (Boe and Angelidaki, 2009).

Modeling of most of the above mentioned
applications requires the solution of the diffusion
equation that governs transport and reaction processes
in pellets that are in the mixed fluid. Even under
isothermal conditions the model can be nonlinear
due to the reaction rate kinetic expression. As
consequence, even with all the recent advances
in numerical methods and commercial software,
different, more accurate and efficient numerical
methodologies are being evaluated. One possibility
is to derive schemes involving Green’s functions
and take advantage of the integral form to set
numerical schemes with element discretization
(Álvarez-Ramı́rez et al., 2007). Iterative schemes for
the solution of nonlinear reaction-diffusion problems
in 1D were successfully applied by Valdés-Parada et
al. (2007, 2008a) under isothermal and nonisothermal
conditions. This approach was later extended to
study reaction-diffusion-convection processes in
tubular reactors by Valdés-Parada et al. (2008b)
and Hernández-Martı́nez et al. (2011a). The idea
in the iterative scheme is to regard the reaction rate
term as a source in the differential equation, so
that the Green’s function only accounts for transport
processes. The result is an implicit integral expression
for the concentration that exhibits faster convergence
rates than typical finite-differences schemes.

Kim et al. (2008) proposed to use 1D Green’s
functions associated to each coordinate axis to
solve multi-dimensional second-order elliptic partial
differential equations. Recently, Mandaliya et
al. (2013) showed that two-dimensional Green’s
functions lead to accurate effectiveness factors

predictions in 2D geometries. Mansur et al.
(2009) developed a numerical solution algorithm
to study linear and transient heat conduction
equations based on discrete Green’s functions,
which are determined numerically using the finite
element method. The numerical results were
found to be in excellent agreement with the
results provided from other numerical and analytical
schemes. Furthermore, Green’s function formulations
have also been used to pose an approximation problem
based on a domain decomposition to produce non-
local finite differences schemes for both reaction-
diffusion (Hernández-Martı́nez et al., 2011b) and
reaction-diffusion-convection (Hernández-Martı́nez et
al., 2013) processes.

In this work, we extend the use of integral equation
formulations based on Green’s functions to study the
dynamics of the concentration of a reactant in a slurry
CSTR operating under unsteady conditions. To this
end, we first solve the linear model to compute the
corresponding Green’s function and we demonstrate
that the resulting expression can also be obtained from
the Laplace transform method as prevously reported
in the literature (Marroquı́n et al., 2002; Sales-Cruz
et al., 2012). Later on, we use the iterative scheme
referred above to predict the effluent concentration
dynamics for a Michaelis-Menten-type reaction rate.
The paper is organized as follows: The solution
of the nonlinear problem using Green’s functions is
presented in Section 2. This solution is verified by
means of the Laplace transform method as shown
in Appendix B. With the aim of simplifying the
expressions for the Green’s functions involved in the
solutions, we propose to use those associated to the
problem solution assuming quasi-steady conditions
for transport and reaction in the catalytic pellets as
explained in Section 3. Later on, in Section 4, the
new method expressions for the steady-state case and
quasi-steady state are used to predict the concentration
profiles and their evolution, which are compared with
those resulting from numerically solving the problem
using finite differences. Conclusions and potential
extensions are provided at the end of the paper.

2 Problem statement and solution

2.1 Dimensionless model

Let us consider the system sketched in Fig. 1
consisting of a slurry CSTR involving a fluid phase
and a dispersed phase (the catalytic pellets).
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Inlet

Outlet

Fig. 1. Sketch of a slurry continuous stirred tank
reactor.

The same fluid saturates the pores of the pellets,
carrying a chemical reactive (species-A) that
undergoes adsorption and chemical reaction at the
surface of the pellet pores. From a previous work
by Sales-Cruz et al. (2012), the following non-
dimensional model can be used to describe mass
transport, adsorption and reaction in the pellets:

α
∂Up

∂τ
=

1
ξ2

∂

∂ξ

(
ξ2 ∂Up

∂ξ

)
−Φ2R(Up),∀ξ ∈ (0, 1), τ > 0

(1)
In the above expression, the parameters α and Φ

are associated to adsorption and the reaction rate,
respectively (see Eq. 14b in Sales-Cruz, et al., 2012).
As a matter of fact, Φ corresponds to the pellet Thiele
modulus. In addition, the dimensionless time and
radial coordinate are denoted by τ and ξ, respectively.
In this way, ξ = 0 locates the center of the spherical
catalytic pellet and ξ = 1 its surface. Finally, Up is
the dimensionless concentration of species A in the
pellets and R(Up) is a nonlinear function of Up. The
concentration Up is bound to be defined ∀ξ ∈ [0, 1]; in
addition, Up is coupled with the concentration in the
surrounding fluid, U f , by the boundary condition

ξ = 1, −
∂Up

∂ξ
= Bi(Up

∣∣∣
ξ=1 − U f ) (2)

with Bi being the Biot number and U f solving the
following differential equation

dU f

dτ
= ψin

(
Uin (τ) − U f

)
+ ψp

(
Up

∣∣∣
ξ=1 − U f

)
,∀τ > 0

(3)
here, the parameters ψin and ψp represent the
reciprocal of the dimensionless fluid residence time
and a modified pellet Biot number, respectively (see

Eq. 15 in Sales-Cruz et al., 2012). In addition, Uin is
the inlet fluid concentration, which is assumed to be a
known function of τ. Finally, the initial conditions are

when τ = 0, Up = Up0; U f = U f 0 (4)

The linear version of this problem has been solved by
Marroquı́n et al. (2002) using the Laplace transform
method and by Sales-Cruz et al. (2012) using a Fourier
series expansion approach.

2.2 Solution approach in terms of Green’s
functions

Following the iterative scheme proposed by Valdés-
Parada et al. (2007), the first step to find the solution
is to state the governing initial and boundary-value
problem for the Green’s functions associated to the
concentration in the pellets and in the fluid phase,
i.e., G0

p and G0
f , respectively. Recalling that, in this

approach the reaction rate term is regarded as source
in Eq. (1), the adjoint Green’s functions, G0∗

p and G0∗
f ,

solve the following problem

− α
∂G0∗

p

∂τ
−

1
ξ2

∂

∂ξ

ξ2
∂G0∗

p

∂ξ

 = δ (τ − τ0) δ (ξ − ξ0)

(5a)

ξ = 1, −
∂G0∗

p

∂ξ
= Bi

(
G0∗

p

∣∣∣
ξ=1
−G0∗

f

)
(5b)

−
dG0∗

f

dτ

∣∣∣∣∣∣∣
ξ=1

= −ψin G0∗
f

∣∣∣
ξ=1

+ ψp

(
G0∗

p

∣∣∣
ξ=1
− G0∗

f

∣∣∣
ξ=1

)
(5c)

With initial conditions

G0∗
p (ξ, ξ0, τ − τ0) = 0,G0∗

f (ξ, ξ0, τ − τ0) = 0, τ > τ0
(5d)

It should be noticed that the accumulation terms
in Eqs. (5a) and (5c) have an opposite sign to the
one corresponding to the problem for Up and U f ,
respectively; this is with the purpose of obtaining the
following relationship between the associated Green’s
functions and their adjoints

G0
j (ξ, ξ0, τ − τ0) = G0∗

j (ξ, ξ0, τ0 − τ) , j = p, f (6)

The next step towards the solution is to use Green’s
formula in terms of the dependent variables Up and
G0∗

p ,
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ξ=1∫
ξ=0

G0∗
p

ξ2

∂

∂ξ

(
ξ2 ∂Up

∂ξ

)
−

Up

ξ2

∂

∂ξ

ξ2
∂G0∗

p

∂ξ

 ξ2dξ

=

G0∗
p
∂Up

∂ξ
− Up

∂G0∗
p

∂ξ


ξ=1

(7)

Substitution of the corresponding differential
equations and boundary conditions leads to

ξ=1∫
ξ=0

α∂G0∗
p Up

∂τ
+ Φ2G0∗

p Rp + Upδ (τ − τ0) δ (ξ − ξ0)

 ξ2dξ

= Bi
[
G0∗

p

∣∣∣
ξ=1

U f − Up

∣∣∣
ξ=1

G0∗
f

]
(8)

In order to make further progress, let us integrate
this equation from τ = 0 to τ = τ+

0 and the use of
Dirac’s delta function filtration property, followed by
the change of variables τ� τ+

0 , ξ0 � ξ and G0∗
j � G0

j
( j = p, f ), in order to obtain

Up (ξ, τ) = αUp0

ξ0=1∫
ξ0=0

G0
p (ξ, ξ0, τ) ξ2

0dξ0

︸                             ︷︷                             ︸
influence of the initial concentration in the pellet

− Φ2
∫ τ0=τ

τ0=0

ξ0=1∫
ξ0=0

[
G0

p (ξ, ξ0, τ − τ0) Rp

]
ξ2

0dξ0dτ0

︸                                                      ︷︷                                                      ︸
influence of the reaction rate

+

τ0=τ∫
τ0=0

Bi
[
G0

p

∣∣∣
ξ0=1

U f − Up

∣∣∣
ξ0=1

G0
f (ξ, 1, τ − τ0)

]
dτ0

︸                                                          ︷︷                                                          ︸
influence of the mass exchange with the fluid

(9)

where the physical meaning of each term has been
clearly identified. The above result has the drawback
that it is expressed in terms of the concentration in
the fluid phase, which is not known at this point. To
overcome this issue, let us integrate the combination
of the fluid equations, Eqs. (3) and (5c), and perform
similar algebraic steps as those used above, to arrive to
the following result

−
Bi
ψp

U f 0 G0
f

∣∣∣
τ0=0,ξ0=1

=

τ0=τ∫
τ0=0

Bi
ψp
ψin G0

f

∣∣∣
ξ0=1

Uin (τ0) dτ0

+

τ0=τ∫
τ0=0

Bi
(
G0

f Up

∣∣∣
ξ0=1 − U f G0

p

∣∣∣
ξ0=1

)
dτ0 (10)

Addition of Eqs. (9) and (10) leads to

Up (ξ, τ) = αUp0

ξ0=1∫
ξ0=0

G0
p (ξ, ξ0, τ) ξ2

0dξ0

︸                             ︷︷                             ︸
influence of the initial concentration in the pellet

+ BiU f 0
1
ψp

G0
f

∣∣∣∣∣∣
τ0=0︸               ︷︷               ︸

influence of the initial concentration in the fluid

+ Biψin

τ0=τ∫
τ0=0

1
ψp

G0
f Uin (τ0)dτ0

︸                             ︷︷                             ︸
influence of the inlet fluid concentration

− Φ2

τ0=τ∫
τ0=0

ξ0=1∫
ξ0=0

[
G0

p (ξ, ξ0, τ − τ0) Rp (ξ0)
]
ξ2

0dξ0dτ0

︸                                                         ︷︷                                                         ︸
influence of the reaction rate

(11)

Comparing Eqs. (9) and (11), it is clear that the
influence of mass exchange with the fluid phase gave
rise to two terms accounting for the influence of the
initial concentration in the fluid phase and of the inlet
concentration to the tank. Since Eq. (11) is now
independent of U f , it can be regarded as the desired
solution for the concentration in the pellets. Therefore,
we may evaluate it at ξ = 1 and also take the first
derivative with respect to ξ evaluated at the same
point ans substitute the resulting expressions into the
interfacial boundary condition (Eq. 2), to obtain the
corresponding expression for U f , which is given by

U f (τ) = αUp0

ξ0=1∫
ξ0=0

G0
f (1, ξ0, τ) ξ2

0dξ0

︸                              ︷︷                              ︸
influence of the initial concentration in the pellet

+ U f 0 Bi H0 (1, 1, τ)︸                ︷︷                ︸
influence of the initial concentration in the fluid
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+ Biψin

τ0=τ∫
τ0=0

H0 (1, 1, τ − τ0) Uin (τ0)dτ0

︸                                           ︷︷                                           ︸
influence of the inlet fluid concentration

− Φ2

τ0=τ∫
τ0=0

ξ0=1∫
ξ0=0

G0
f (ξ, ξ0, τ − τ0) Rp (ξ0) ξ2

0dξ0dτ0

︸                                                        ︷︷                                                        ︸
influence of the reaction rate in the pellet

(12)

For the sake of brevity in presentation, we
introduced

H0 (
ξ, ξ0 , τ − τ0

)
=

1
ψp

G0
f +

1
Bi

∂G0
f

∂ξ


(ξ,ξ0 ,τ−τ0)

(13)

Clearly Eqs. (11) and (12) share similar structures and
we will refer to them as the formal solutions of the
dimensionless problem given by Eqs. (1)-(10). The
concentration profiles and associated variables can be
obtained by the iterative solution of the mentioned
expressions. However, such evaluation requires the
associated Green’s functions to the linear original
problem in the absence of bulk reaction (i.e., Φ = 0),
G0

p (ξ, ξ0, τ − τ0) and G0
f (ξ, ξ0, τ − τ0). The procedure

to obtain them using Fourier series expansions is
outlined in Appendix A; it suffices here to provide the
resulting expressions, which are

G0
p (ξ, ξ0, τ − τ0) =

∞∑
n=1

ϕn (ξ0)ϕn (ξ)
Kn

e−λ
2
nα
−1(τ−τ0)

(14a)

G0
f (ξ, ξ0, τ − τ0) = ψp

∞∑
n=1

ϕn (ξ0)ϕn (ξ)e−λ
2
nα
−1(τ−τ0)

Kn

(
ψp + ψin − λ2

nα
−1

)
(14b)

Certainly, the derivation of Eqs. (11) and (12) could
have been performed using other solution approaches
such as the Laplace transform method. In Appendix
B we demonstrate that the expressions provided above
can be recovered with this method.

At this point, it should be clear that the
evaluation of the Fourier series representing the
Green’s functions will require significant amounts of
computing time. For such reason, we are currently
looking for expressions of the associated Green’s
functions that allow a more efficient calculation
procedure. Nevertheless, it is valuable to determine

if the presented methodology leads to reasonable
predictions for other simpler cases that keep the two
coupled governing equations structure of the nonlinear
problem. This can be achieved by assuming that
transport and reaction in the pellets take place under
quasi-steady conditions as detailed in the following
paragraphs.

3 Nonlinear quasi-steady and
steady-state solution

3.1 Quasi-steady solution

As explained above, with the aim of avoiding the
computational burden of using the Green’s functions
for the fully transient problem in the iterative scheme
for computing the concentration dynamics, we direct
our attention to the case in which transport and
reaction in the pellets can be assumed to be quasi-
steady. Such conditions can be determined by
performing an order of magnitude analysis to Eq. (1) to
conclude that quasi-steady conditions can be achieved
for τ � α, or, in terms of dimensional quantities,

r2
p

Dw

(
1 +

avωK
εγω

)
� t (15)

where Dω and K are the effective diffusion coefficient
and adsorption rate in the pellets, respectively;
whereas avω, εγω and rp refer to the interfacial area per
unit volume, porosity and pellet radius, respectively.
Under these conditions, the accumulation term in the
differential equation for the concentration in the pellet
(Eq. 1) can be neglected and this equation takes the
form

1
ξ2

∂

∂ξ

(
ξ2 ∂Uqs

p

∂ξ

)
− Φ2Rp = 0, for 0 < ξ < 1 (16)

and the rest of the problem formulation remains
unaltered. Using the integral equation formulation
based on the use of Green’s functions applied above, it
is possible to solve the quasi-steady-state problem to
find

Uqs
p (ξ, τ) = U f 0e−ψinτ + ψin

τ0=τ∫
τ0=0

Uin (τ0) e−ψin(τ−τ0)dτ0

− Φ2

τ0=τ∫
τ0=0

ξ0=1∫
ξ0=0

[
Gqs

p (ξ0, ξ, τ − τ0) Rp

(
Uqs

p (ξ0, τ0)
)]
ξ2

0dξ0dτ0

(17a)
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Uqs
f (τ) = U f 0e−ψinτ + ψin

τ0=τ∫
τ0=0

Uin (τ0) e−ψin(τ−τ0)dτ0

− Φ2

τ0=τ∫
τ0=0

ξ0=1∫
ξ0=0

[
Gqs

f (1, ξ0, τ − τ0) Rp

(
Uqs

p (ξ0, τ0)
)]
ξ2

0dξ0dτ0

(17b)

Comparing these expressions with those obtained in
the previous section (Eqs. 2.2), we notice that the
influence of the initial condition in the pellets is no
longer present. In addition, the Green’s functions Gqs

p
and Gqs

f solve Eqs. (5) with Eq. (5a) written under
quasi-steady conditions. The resulting expressions
from solving that problem are

Gqs
p (ξ, ξ0, τ − τ0) =

1
Bi



(
Biξ−1

0 + 1 − Bi
)
δ (τ − τ0)

+ψpe−ψin(τ−τ0), for 0 < ξ < ξ0(
Biξ−1 + 1 − Bi

)
δ (τ − τ0)

+ψpe−ψin(τ−τ0), for ξ0 < ξ < 1
(18a)

Gqs
f (τ − τ0) =

ψp

Bi
e−ψin(τ−τ0) (18b)

Certainly, these expressions are easier to evaluate than
those given by Eqs. (14) and will be used in the
iterative scheme to predict the concentration dynamics
in the tank. At this point one may ponder about
the predictive capabilities of the quasi-steady solution
with respect to the fully transient solution. This issue
was discussed by Valdés-Parada et al. (2005). These
authors concluded that the quasi-steady-state solution
is a very convenient tool to estimate the dynamics
of the fluid, average and interfacial concentrations,
since the predictions exhibited a difference smaller
than 10% with those resulting from the fully-transient
solution. Furthermore, it is worth stressing that the
quasi-steady state assumption is not exclusive to this
type of systems. As a matter of fact, the quasi-
steady assumption is a reliable tool for studying
mass transport in biological and synthetic membranes
as explained by Truskey et al. (2009). For in
vitro enzyme-catalized reactions, described by the
Michaelis-Menten model, experiments are usually
carried out under conditions of substrate excess
(or, equivalently, when the enzyme concentration
is sufficiently small) in order to guarantee quasi-
steady conditions and thus justifying the Briggs-
Haldane approximation (Tzafriri and Edelman, 2007).

Moreover, Pedersen et al. (2008) extended the
use of the quasi-steady condition to study complex
enzyme reactions such as competitive reactions,
double phosphorylation, Goldbeter-Koshland switch.
Recently, Kim et al. (2014) provided an interesting
discussion about the separation of time scales
justifying the deterministic and stochastic versions of
the quasi-steady condition for simulatiing biochemical
reaction networks with disparate timescales.

3.2 Steady-state solution

As a final part of the solution procedure, it is
illustrative to provide the corresponding expressions
for the concentration in the pellets and in the fluid
under steady-state conditions. Following the same
solution procedure used above, one may solve the
steady-state version of Eqs. (1)-(3) and obtain

U ss
p (ξ) = Uin − Φ2

ξ0=1∫
ξ0=0

[
Gss

p (ξ, ξ0) Rp

(
U ss

p (ξ0)
)]
ξ2

0dξ0

(19a)

U ss
f = Uin − Φ2

ξ0=1∫
ξ0=0

Gss
f (1, ξ0) Rp

(
U ss

p (ξ0)
)
ξ2

0dξ0

(19b)

where the influences of the initial condition in the
fluid and in the pellets are no longer present and the
inlet function is no longer a function of time. Indeed,
the above expressions could have resulted from taking
τ � 1 in Eqs. (2.2) or in Eqs. (17). In this case, the
steady-state versions of the Green’s functions are

Gss
p (ξ, ξ0) =


ξ−1

0 +
(1−Bi)ψin+ψp

Biψin
, for 0 < ξ < ξ0

ξ−1 +
(1−Bi)ψin+ψp

Biψin
, for ξ0 < ξ < 1

(20a)

Gss
f =

ψp

Biψin
(20b)

Despite the simplicity of these expressions, they will
prove to be quite useful in carrying out a parametric
analysis of the model, as will be shown in the
following section.

4 Results
In this section, the numerical results from the implicit
formulas derived in this paper are compared with the
predictions resulting of a classical finite difference
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approach. The nonlinear kinetic expression used in all
test is a Michaelis-Menten type given by

R
(
Up

)
=

(1 + γ)2Up(
1 + γUp

)2 (21)

Without any loss of generality, in all numerical
simulation the parameter γ was set equal to the
unity. In order to evaluate the steady-state analytical
solution, we used the following iterative approach:

1. For a given set of parameters (Bi, Φ, ψin, ψp and
tolerance), assume the concentration fields.

2. Compute the Green’s functions Gss
p and Gss

f
using Eqs. (20).

3. Compute the integral terms on the RHS of Eqs.
(19).

4. Compute U ss
p and U ss

f using Eqs. (19).

5. Verify if the convergence criterion is met, if
this is the case, report the solution; otherwise
improve the assumption of the concentration
fields and return to step 3.

In all the computations we chose as a convergence
criterion the relative error percent in the predictions
of the average particle concentration with respect to
the value resulting from the concentration fields of the
previous iteration. The average particle concentration
is defined as

〈Up〉 = 3

ξ=1∫
ξ=0

Up ξ
2dξ (22)

All the results were obtained fixing the tolerance
to 10−8. The numerical solution of the problem was
performed using finite differences schemes following
a similar approach to the one detailed above for
the analytical solution with the same convergence
criterion.

In Fig. 2, we evaluate the influence of the reaction
rate and interfacial mass transport over the steady-
state concentration profiles in the catalytic pellets. As
expected, when the reaction rate is larger than the rate
of diffusion (i.e., as the Thiele modulus increases) the
concentration decreases. This effect is more drastic for
Φ > 1 as shown in Fig. 2a. In addition, if one fixes the
Thiele modulus and modifies the Biot number, it turns
out that the results are more sensitive to variations
in Bi when this parameter is lower than one. The
comparison with the finite difference predictions is
excellent.

In Fig. 3 we extend the analysis of the influence
of the Biot number and the Thiele modulus over the
fluid phase concentration as well as over the interfacial
concentration and the average concentration. As
expected, all the concentrations decrease as the
reaction rate becomes faster than diffusion. Since
transport of species A goes from the fluid phase to
the catalytic pellets, it is to be expected that 〈Up〉 <
Up

∣∣∣
ξ=1 < U f . Consistently with the results provided

in Fig. 2, for Φ > 1, we can appreciate that small
variations if Φ translate to rapid reductions in the
concentration values.
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In this section the numerical results from the implicit formulas derived in this paper are 
compared with the predictions resulting of a classical finite difference approach. The 
nonlinear kinetic expression used in all test is the Michaelis-Menten type given by 

 

  

R U p( ) = 1+ γ( )2
U p

1+ γU p( )2   (0) 

In all numerical simulation the parameter γ  was set equal to 1.  
The steady-state results for the approached presented in the paper were obtained with Eqs. 
(0)-(0). It is worth noting, that the iterative evaluation of the fluid and pellet concentration 
requires the knowledge of the pellet concentration profile.  
In Figures 1, the pellet radial concentration profiles are presented for different values of the 
Thiele modulus (for a fixed Biot value) and for different values of Biot number (with a 
fixed value of Φ ). The Comparison with the finite difference predictions is excellent. 
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Figure 1. Effect of Thiele modulus and Biot number on the pellet steady-state concentration 
profiles. a) Variations on the Thiele modulus for Bi = 1, and b) Variations on the 
Biot for Φ =1. 

 
In Figures 2, the fluid and pellet surface concentration obtained with both methodologies 
are compared. The results for the average pellet concentration defined by 

 
1 2

0
3p pU U dξ ξ= ∫   (0) 

Paco vp � 29/6/14 11:18
Eliminado: 51

Paco vp � 29/6/14 11:18
Eliminado: (36)

Paco vp � 29/6/14 11:18
Eliminado: (39)

Paco vp � 29/6/14 11:18
Eliminado: 52

Fig. 2. Effect of Thiele modulus and Biot number on the pellet steady-state concentration profiles. a) Variations on
the Thiele modulus for Bi = 1, and b) Variations on the Biot for Φ = 1.
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Are also included. The comparison of the curves as function of Thiele modulus and Biot 
number respectively show good agreement between both methodologies. A more 
demanding test, the evaluation of the Difference % yields values smaller than ????. 
 

 
The comparison of transient results is limited to the quasi-steady state model predictions. In 
this case the reference is the finite difference solution of the model given by Eqs. (0) and 
(0)-(0). The Green’s function approach results were obtained by the evaluation of Eqs. (0)-
(0). The evolution of the pellet concentration profile is required for the iterative evaluation 
of fluid and pellet concentrations. 
The results in Figures 3 show the evolution of the fluid, pellet surface and pellet average 
concentration for a case when the fluid mass transfer resistance is not negligible for (a) 
characteristic times of diffusion and reaction are comparable ( )1Φ =  and (b) the diffusive 
resistance controls de process ( )1Φ = . 
In Figures 4, both for a moderate Thiele modulus value, it can be observed the effect of the 
fluid mass transfer resistance on the evolution of the three mentioned concentrations. The 
visual comparison of the results, shown in Figs. 3 and 4, indicates that there are no 
appreciable differences between the predictions of the proposed methodology with respect 
to the reference. 
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Figure 2. Effect of Thiele modulus and Biot number on fluid steady-state concentration 

profiles. a) Variations of Thiele modulus and Bi=1 and b) Variations of Biot for 
Φ = 1. 
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Fig. 3. Effect of Thiele modulus and Biot number on fluid steady-state concentration profiles. a) Variations of Thiele
modulus and Bi = 1 and b) Variations of Biot for Φ = 1.
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(b) 
Figure 3. Time evolution of fluid quasi-steady-state concentration for Bi = 1. a) Φ = 1 and 

b) Φ = 10 . 
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(b) 
Figure 4. Time evolution of fluid quasi-steady-state concentration for Φ = 1. a) Bi = 10 and 

b) Bi = 100. 
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Green’s functions indicates that the methodology is as good as others well established. It is 
important to recognize that the conclusion is based on limited number of tests and that 
complete transient concentration predictions will be carried out in the future. This analysis 
is subject to improve the presentation of the Green’s functions. One possibility, to avoid the 
infinity Fourier series representation, it is to combine the quasi-steady state Green’s 

Fig. 4. Time evolution of fluid quasi-steady-state concentration for Bi = 1. a) Φ = 1 and b) Φ = 10.

In addition, the predictions of all the concentrations
are more sensitive for Biot number values around
the unity. Comparison of the predictions from the
analytical and numerical solutions again shows great
agreement. As a matter of fact, the % of difference
between both solutions is below 10−4 %.

Directing the attention to the dynamics of 〈Up〉,
Up

∣∣∣
ξ=1 and U f , we evaluated the quasi-steady state

solutions using the iterative scheme outlined above.
The main difference is that the iteration is performed
at each time step. To carry put the simulations, we
fixed the initial conditions in the fluid phase and in the
particles to be zero and the inlet concentration was set

to be a unit step function,

Uin(τ) =

{
1, τ ≥ τ0
0, τ < τ0

(23)

Certainly other inlet time functions could be
considered such as a finite pulse function and a
periodic function as shown in previous studies (c f .,
Marroquı́n et al., 2002; Valdés-Parada et al., 2005).
In all the simulations, different time steps were used
in order to guarantee that the solution is independent
of this numerical parameter. In Fig. 4 we show the
evolution of the fluid, pellet surface and pellet average
concentration for a case when the fluid mass transfer
resistance is not negligible (i.e., Bi = 1).
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(b) 
Figure 3. Time evolution of fluid quasi-steady-state concentration for Bi = 1. a) Φ = 1 and 

b) Φ = 10 . 
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Figure 4. Time evolution of fluid quasi-steady-state concentration for Φ = 1. a) Bi = 10 and 

b) Bi = 100. 
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important to recognize that the conclusion is based on limited number of tests and that 
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Fig. 5. Time evolution of fluid quasi-steady-state concentration for Φ = 1. a) Bi = 10 and b) Bi = 100.

The analysis is provided for two cases: a) The
characteristic times of diffusion and reaction are
comparable (i.e., Φ = 1) and b) The diffusive
resistance controls the process (i.e., Φ = 10). Since
the Biot number is fixed, the differences between
〈Up〉 and Up

∣∣∣
ξ=1 are maintained in the plots provided

in Figs. 4a and 4b. Clearly, increasing the Thiele
modulus from 1 to 10 affected more drastically
the concentration values in the pellets, while the
dynamics of the concentration in the fluid was almost
unaffected. Finally, in Fig. 5 we show the effect
of the fluid mass transfer resistance on the evolution
of the three mentioned concentrations for a moderate
Thiele modulus value. In this case we appreciate that
the interfacial concentration matches the fluid-phase
concentration for Bi ≥ 10 for all times. In all cases
the agreement between the analytical and numerical
solutions is quite close as the % of difference between
the solutions remained on the order of 10−4 or less for
all times.

Final remarks
In this work we developed the analytical solution
for the prediction of the concentration dynamics in
a slurry stirred tank reactor. The solution of the
fully transient model was carried out using integral
equation formulations based on Green’s functions.
The physical meaning of the several terms in the
solutions was clearly identified. While the formulation
based on Green’s functions is both mathematically
and physically appealing, it is worth remarking that
it is not the only way to obtain the solution as shown

in Appendix B using the Laplace transform method
in combination with the method of eigenfunction
expansions. The demonstration is interesting per
se, since the concentration formulas in the Laplace
domain can be useful for frequency analysis.

Since the Green’s functions for the fully transient
model are not easy to evaluate in terms of computer
time, we evaluated the quasi-steady and steady-
state solutions and used an iterative approach to
predict the values of the concentration in both the
particle and in the fluid. The comparison of the
predictions obtained with the equations based on
Green’s functions indicates that the methodology is
just as good as other well-established methods. The
analysis was focused on the influence of the reaction
rate and interfacial transport resistances over the
steady-state concentration profiles and their dynamics.
One possibility to avoid the infinity Fourier series
representation, is to combine the quasi-steady state
Green’s functions with some special form of them for
a short period of time after the start-up of the process.
These ideas will be further explored in another work.
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Nomenclature

Bi pellet Biot number
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Cn(τ) Fourier series coefficient for Green’s
functions

G Green’s function for passive case
hn(ξ) fluid Eigen function
Rp dimensionless reaction rate
s Laplace parameter
Up dimensionless pellet concentration
U f dimensionless fluid concentration

Greek symbols
α pellet adsorption parameter
δ Dirac’s delta function
Φ pellet Thiele modulus
ϕn(ξ) pellet Eigen function
λn nth-Eigen value
ξ dimensionless radial coordinate of the

spherical particles
ψin inverse of the dimensionless residence time
ψp modified pellet Biot number
τ dimensionless time

Subscripts
f fluid
p pellet
0 indicates reference value, source point or time

Subscripts
0 no chemical reaction
qs quasi steady state
ss steady state
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Appendix A Derivation of the
unsteady Green’s
functions using
Fourier series

In this section we derive the analytical expressions
of the Green’s functions G0

p (ξ, ξ0, τ − τ0) and
G0

f (ξ, ξ0, τ − τ0) using Fourier series. The governing
equations for these dependent variables are given by
Eqs. (5). In those equations, two modifications are
needed: a) the sign in the three time derivatives must
be changed to the opposed sign, and b) the initial
conditions are given by

G0
p (ξ, ξ0, τ − τ0) = 0, G0

f (ξ, ξ0, τ − τ0) = 0, τ < τ0

(A.1)

We propose to obtain the Green’s functions in the form
of the following Fourier series expansions

G0
p =

∞∑
n=1

Cn (τ)ϕn (ξ) and G0
f =

∞∑
n=1

Cn (τ) hn (ξ)

(A.2)

where the Eigen functions are given by

ϕn (ξ) =
sin (λn ξ)

ξ
(A.3a)

hn (1) =
ϕn (1)ψp(

ψp + ψin − λ2
nα
−1

) (A.3b)

These are the solution of the associated Sturm-
Liouville problem that is defined by the following
differential and algebraic equations

1
ξ2

d
dξ

(
ξ2 dϕn

dξ

)
= − λ2

nϕn (A.4a)

−ψin + ψp

(
ϕn (1)

hn
− 1

)
= −

(
Φ2 + λ2

n

α

)
(A.4b)

which are coupled by the interfacial boundary
condition

ξ = 1, − ϕn
′ (1) = Bi

[
ϕn (1) − hn(1)

]
(A.4c)

This problem can be obtained by applying the
method of separation of variables to the boundary
value problem that defines G0

p (ξ, ξ0, τ − τ0) and
G0

f (ξ, ξ0, τ − τ0). Furthermore, the Eigen values,
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λn are obtained by solving the following algebraic
equation

tanλn

λn
=

ψp + ψin − λ
2
nα
−1(

λ2
nα
−1 − ψin

)
(Bi − 1) + ψp

for n = 1, 2, 3, ...∞

(A.5)

and the orthogonality condition is given by

α

ξ=1∫
ξ=0

ϕn ϕm ξ
2dξ +

Bi
ψp

hmhn = 0, for n , m

(A.6)

In order to find the coefficients Cn(τ) in Eqs. (A.2), let
us write Green’s formula in terms of the functions G0

p
and ϕm,

ξ=1∫
ξ=0

ϕm

ξ2

∂

∂ξ

ξ2
∂G0

p

∂ξ

 − G0
p

ξ2

∂

∂ξ

(
ξ2 ∂ϕm

∂ξ

)ξ2dξ

=

ϕm
∂G0

p

∂ξ
−Gp

∂ϕm

∂ξ


ξ=1

(A.7)

which, after incorporation of the differential equations
and the boundary conditions, takes the form

ξ=1∫
ξ=0

ϕm

∂G0
p

∂τ
− δ (τ − τ0) δ (ξ − ξ0)

 + λ2
mϕmG0

p

 ξ2dξ

= Bi
[
ϕm (1) G0

f − hm G0
p

∣∣∣
ξ=1

]
(A.8)

Application of the filtration property of Dirac’s delta
function, after some algebra involving the fluid
equations, leads to

α

ξ=1∫
ξ=0

ϕm

∂G0
p

∂τ
+ λ2

mα
−1G0

p

ξ2dξ = ϕm (ξ0) δ (τ − τ0)

−
Bihm

ψp

dG0
f

dτ
+ λ2

mα
−1G0

f

 (A.9)

To make further progress, let us substitute the
expressions for G0

p and G0
f given in Eqs. (A.2) and

take into account the orthogonality condition (Eq.
A.6), in order to obtain the following linear first-order
differential equation,

dCn

dτ
+ λ2

mα
−1Cn =

ϕn (ξ0)
Kn

δ (τ − τ0) (A.10)

where, for convenience, we introduced

Kn = α

1∫
0

ξ2 ϕ2
ndξ +

Bi h2
n

ψp
(A.11)

Time-integration of Eq. (A.10) from τ = 0 to τ = τ+
0

and taking into account that, in order to satisfy Eq.
(A.1), it follows that Cn(0) = 0, yields the expression
for the coefficients Cn(τ), which together with Eqs.
(A.2) leads to

G0
p (ξ, ξ0, τ − τ0) =

∞∑
n=1

ϕn (ξ0)ϕn (ξ)
Kn

e−λ
2
nα
−1(τ−τ0)

(A.12a)

G0
f (ξ, ξ0, τ − τ0) = ψp

∞∑
n=1

ϕn (ξ0)ϕn (ξ)e−λ
2
nα
−1(τ−τ0)

Kn

(
ψp + ψin − λ2

nα
−1

)
(A.12b)

Appendix B Solution by the
Laplace transform
method

In this section, we show that the expressions
given by Eqs. (11) and (12) can be derived by
other methodologies, in this case we use the
Laplace transform method combined with variation
of parameters to solve the resulting differential
equation. After a lengthy procedure, that includes the
application of the interfacial boundary condition, the
following equations for the Laplace transform of the
particle and fluid concentrations U p (ξ, s) and Ū f (s),
are obtained

U p (ξ, s) =
Up0

s
−

BiUp0

s
[
β cosh (β) + (Bi − 1) sinh (β)

] sinh (β ξ)
ξ

+ Up0
ψp Bi

sβM (0, s)

[
β cosh (β) − sinh (β)

β cosh (β) + (Bi − 1) sinh (β)

]
sinh (β ξ)

ξ

+ U f 0
Bi

βM (0, s)
sinh (β ξ)

ξ
+ U in

ψin Bi
βM (0, s)

sinh (β ξ)
ξ

+
Biψp

βM (0, s)
sinh (β ξ)

ξ
R p (1) + R p (ξ) (B.1a)

U f (s) = Up0
ψp

[
β cosh (β) − sinh (β)

]
sβM (0, s)

+
β cosh (β) + (Bi − 1) sinh (β)

βM (0, s)
U f 0

+ ψin
β cosh (β) + (Bi − 1) sinh (β)

βM (0, s)
Ūin
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+
ψpR p (1)

[
β cosh (β) + (Bi − 1) sinh (β)

]
βM (0, s)

(B.1b)

here we used the following definitions

β =
√
αs (B.2a)

R p (ξ) = −
Φ2

β

cosh (β ξ)
ξ

IS (ξ, 0) +
Φ2

β

sinh (β ξ)
ξ

IC (ξ, 1)

+
Φ2

β

sinh (β ξ)
ξ

[
β sinh (β) + (Bi − 1) cosh (β)
β cosh (β) + (Bi − 1) sinh (β)

]
IS (1, 0)

(B.2b)

IS (ξ, 0) =

ζ=ξ∫
ζ=0

ζsinh (β ζ)Rpdζ (B.2c)

IC (ξ, 1) =

ζ=ξ∫
ζ=1

ζ cosh (β ζ)Rpdζ (B.2d)

βM (ξ, s) =
(
s + ψin + ψp

)
β cosh

[
β (1 − ξ)

]
+

[
(s + ψin) (Bi − 1) − ψp

]
sinh

[
β (1 − ξ)

]
(B.2e)

The over bar in the above expressions indicates the
Laplace transform of the involved variable and s is the
Laplace transform parameter. In order to demonstrate
the equivalence of Eqs. (B.1) with Eqs. (2.2), in the
first stage, the Laplace transform operator is applied to
Eqs. (2.2) to obtain

U p (ξ, s) = αUp0

ξ0=1∫
ξ0=0

Gp (ξ, ξ0, s) ξ2
0dξ0 +

Bi
ψp

U f 0G f (ξ, 1, s)

+ Bi
ψin

ψp
U in (s) G f (ξ, 1, s)

− Φ2

ξ0=1∫
ξ0=0

Gp (ξ, ξ0, s) Rp ξ
2
0dξ0 (B.3a)

U f (s) = αUp0

ξ0=1∫
ξ0=0

G f (1, ξ0, s) ξ2
0dξ0 + Bi U f 0H̄0 (1, 1, s)

+ ψinBi U in (s) H̄0 (1, 1, s)

− Φ2

ξ0=1∫
ξ0=0

G f (1, ξ0, s) Rp ξ
2
0dξ0 (B.3b)

In the second stage, the boundary value problem that
defines the Green’s function is solved in the Laplace

domain to obtain

G f (ξ, 1, s) = ψp
sinh (β ξ)
βM (0, s) ξ

(B.4a)

Gp (ξ, ξ0, s) =
1

βM (0, s) ξ0ξ


M (ξ0, s) sinh (β ξ) ,

for 0 < ξ < ξ0
M (ξ, s) sinh (β ξ0) ,

for ξ0 < ξ < 1
(B.4b)

The details to obtain the above expressions are
given in Appendix C. In the following stage of the
demonstration, the use of Eqs. (B.4) allows showing
that the first three terms in the RHS of Eqs. (B.3) are
equivalent to the corresponding terms in Eqs. (B.1).
Then, the comparison of the terms that contain the
reaction rate of Eqs. (B.1b) and (B.3b) confirms that
the Green’s function given by Eq. (B.4a) for G f is
correct. Finally, comparison of the last terms of Eqs.
(B.1a) and (B.3a) leads to an equation for Gp that is
identical to Eq. (B.4b). In this way, it is shown that
the solutions derived in this section are, without any
additional supposition, identical to the ones obtained
using Green’s functions in Section 2.

Appendix C Determination of
Green’s functions in
the Laplace domain

In this section we find the Green’s functions in
the Laplace domain that complete the derivations
provided in Appendix B. Application of the
Laplace transform to the governing equations for
Gp (ξ, ξ0, τ − τ0) and G f (ξ, ξ0, τ − τ0) leads to

αsG
0
p =

1
ξ2

∂

∂ξ

ξ2
∂G

0
p

∂ξ

 + δ (ξ − ξ0) (C.1a)

sG
0
f = − ψinG

0
f + ψp

(
G

0
p

∣∣∣∣
ξ=1
−G

0
f

)
(C.1b)

which are coupled by means of the boundary condition

ξ = 1, −
∂G

0
p

∂ξ
= Bi

(
G

0
p

∣∣∣∣
ξ=1
−G

0
f

)
(C.1c)

The solution of Eq. (C.1a), for ξ , ξ0, yields

G
0
p (ξ, ξ0, s) =


A

sinh (βξ)
ξ

, for 0 < ξ < ξ0

C
sinh (βξ)

ξ
+ D

cosh (βξ)
ξ

, for ξ0 < ξ < 1

(C.2)
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with β =
√
α s. Using the boundary condition in Eq.

(C.1c), taking into account Eq. (C.1b) to replace G
0
f

allows writing Eq. (C.2) as

G
0
p (ξ, ξ0, s) =

D
ξM (0, s)


M (ξ0, s) sinh(β ξ)

sinh(β ξ0) ,

for 0 < ξ < ξ0
M (ξ, s) ,

for ξ0 < ξ < 1

(C.3)

The additional boundary condition that is needed to
close the above expression results from integration of
Eq. (C.1a) from ξ = ξ−0 to ξ = ξ+

0 , giving rise to the
following flux jump condition

ξ2
0

∂G
0
p

∂ξ

∣∣∣∣∣∣∣∣
ξ+

0

− ξ2
0

∂G
0
p

∂ξ

∣∣∣∣∣∣∣∣
ξ−0

= −1 (C.4)

The constant D can be found by the enforcement
of this interfacial boundary condition, the resulting
expression for G

0
p is given by

G
0
p (ξ, ξ0, s) =

1
βM (0, s) ξ0ξ


M (ξ0, s) sinh (β ξ) ,

for 0 < ξ < ξ0
M (ξ, s) sinh (β ξ0) ,

for ξ0 < ξ < 1
(C.5a)

Finally, the combination of Eqs. (C.1b) and (C.5a)
yields the fluid Green’s function in the Laplace domain

G
0
f (ξ, 1, s) = ψp

sinh (β ξ)
βM (0, s) ξ

(C.5b)
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